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SUMMARY

In�uence of 8nite di9erence schemes and subgrid-stress models on the large eddy simulation calculation
of turbulent �ow around a blu9 body of square cylinder at a laboratory Reynolds number, has been
examined. It is found that the type and the order of accuracy of 8nite-di9erence schemes and the
subgrid-stress model for satisfactory results are dependent on each other, and the grid resolution and the
Reynolds number. Using computational grids manageable by workstation-level computers, with which
the near-wall region of the separating boundary layer cannot be resolved, central-di9erence schemes
of realistic orders of accuracy, either fully conservative or non-conservative, su9er stability problems.
The upwind-biased schemes of third order and the Smagorinsky eddy-viscosity subgrid model can give
reasonable results resolving much of the energy-containing turbulent eddies in the boundary layers and
in the wake and representing the subgrid stresses in most parts of the �ow. Noticeable improvements
can be obtained by either using higher order di9erence schemes, increasing the grid resolution and=or
by implementing a dynamic subgrid stress model, but each at a cost of increased computational time.
For further improvements, the very small-scale eddies near the upstream corners and in the laminar
sublayers need to be resolved but would require a substantially larger number of grid points that are
out of the range of easily accessible computers. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As the cost of large-scale numerical computations is decreasing continually, heavier com-
putational loads are tolerated more in practical calculations of turbulent �ows. The large
eddy simulation (LES) technique that was been thought to be too expensive for practical
calculations now has a high potential to be exploited in various engineering applications
if accuracy and applicabilities are assured. There has been extensive work in making this
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technique a useful tool, but no single procedure has yet emerged as a standard [1–4]. Par-
ticularly, the state of development of LES applied to blu9 bodies as summarized by the
outcome of the Rottach–Egern workshop [5] is disappointingly inconclusive. It remarks that
‘no single simulation was uniformly good’ and that ‘the e9ect proved very diLcult to analyze
is the choice of numerical method’. While use of the di9erence schemes and subgrid-stress
models did vary among the participants at the workshop, it should also be noted that none
used the same number of grid points and resolution. Important questions such as what dif-
ferencing scheme is suitable, which subgrid model is more accurate and how the near wall
region should be represented with what boundary condition, are not answered in a de8nite
way.

The schemes evaluated at the workshop [5], included second-order central di9erence
schemes as well as third-order upwind di9erencing methods. Caution is given to the use
of the upwind di9erencing due to its numerical dissipation, but central di9erence schemes are
not endorsed either, due to their inherent unstable nature. Recently, higher order conservative
schemes are proposed by Morinishi et al. [6] as methods that are free of dissipative penalty
and stability problems, but their necessity and adequacy have not been demonstrated in the
blu9 body LES of relatively large Reynolds number.

As to the subgrid-stress models, inadequacies of the widely used Smagorinsky eddy vis-
cosity model have been amply stressed by many reviews [1–4]. Many newer models such
as the one-equation model (Yoshizawa and Horiuti [7]), dynamic model of eddy-viscosity
type (Germano et al. [8]), scale-similarity-type models (Bardina et al. [9]), mixed dynamic
models (e.g. Vreman et al. [10]) are proposed and improvements of varying degree have
been demonstrated, but the standard Smagorinsky model is still widely used with apparent
success. An even more recent investigation by Fureby et al. [11] reports that LES results are
virtually independent of the details of the subgrid model provided the cuto9 wave number
is within the inertial subrange. Sohankar et al. [12] show results with various models but
the di9erences are of the same order or smaller than the e9ects of changing the grid reso-
lution or considering the blockage e9ects in the test �ow. Furthermore, Bouris and Bergeles
[13] points out that resolving the very 8ne-scale motion near-wall is more important than
the choice of models and they used a two-dimensional grid as large as 300× 350 to place
the 8rst point from the wall at a very short distance of 10−4 of the cylinder side, but at a
cost of giving away representing the three-dimensional motion, and they report marked im-
provements. Many claims of improved accuracy are based on comparisons set up by each
developer and are not always on the same grounds. The models, for example, are often eval-
uated by a calculation of simple wall �ow of very low Reynolds number with grid resolution
exceeding the viscous scale or close (e.g. Horiuti [14] and Najjar and Tafti [15]). All of these
results need to be carefully interpreted in extending to the blu9 body LES of high Reynolds
number.

As pointed out by the workshop review [5], ‘the most useful were those cases in which
a single group did more than one calculation’, which was done by only two groups. In the
present work, though not all factors may be addressed at the same time, we take the two most
important elements of the LES and make a comparative study. For this purpose, we examine
di9erent di9erence schemes and the typical subgrid models keeping other conditions identical
and evaluate again what the suitable type and order of di9erence scheme is, and the subgrid
model for blu9 body LES of a typical engineering scale with a realistic grid resolution. We
do this for the now standard benchmark test case of Lyn’s [16; 17] square cylinder �ow at
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the Reynolds number of 22 000. Accuracies and behavior of numerical schemes and their
coding are 8rst evaluated at lower Reynolds numbers. Once again, emphasis is placed on the
engineering scales with a9ordable computer resources that do not allow the 8rst grid point
from the cylinder surface to be anything closer than the order of tens of the wall units. This
implies the importance of how the near-wall �ow is represented. Since there is no alternative
at this time to the nonslip or the wall-law, or perhaps log-power (Werner and Wengle [18])
boundary conditions as a sure method, we evaluate all other aspects of the methods on
a rather speci8c assumption of nonslip condition with Van Driest-type damping if a point
happens to fall in its e9ective range, which occurs only and surely near the reattachment
points.

2. BASIC EQUATIONS

We consider the �ow past a square cylinder placed in an otherwise uniform �ow of Uin in
the x1 direction, with its axis placed along the x3 direction and its center of the downstream
surface at the origin of the rectangular coordinate system (x1; x2; x3) (Figure 1). If the 8ltered
velocity component in xi direction is 〈ui〉 and the 8ltered pressure is 〈p〉, the 8ltered equations

Figure 1. Computational domain and boundary conditions.
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of motion are
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where � and  are the �uid density and the kinematic viscosity, respectively, �ij = −〈uiuj〉+
〈ui〉〈uj〉 is the subgrid turbulence stress, and 〈 〉 indicates spatial 8ltering.

The eddy viscosity model for the subgrid stress is

�ij = − 2
3
kS�ij + 2GSij (2)

where Sij is the rate of strain tensor of the 8ltered velocity, G is the subgrid eddy-viscosity
coeLcient and kS is the subgrid turbulence kinetic energy. For G and kS , we use the
Smagorinsky model

G =2(CSR)2
√
SijSij; kS =

2G
(CkR)2 (3)

Here CS and Ck are the constants for which we use the numerical values 0.13 and 0.094,
respectively and R is the grid size and is taken to be the geometric average of the grid
spacing in three directions, (Rx1Rx2Rx3)1=3.

We will also use the dynamic procedure to determine the value of CS due to Germano
et al. [8] with Lilly’s modi8cation [19], in which the coeLcient CS is determined from

C2
S = − [SijMij]

2[MijMij]
(4)

where

Sij = 〈uiuj〉 − 〈ui〉〈uj〉

Mij = R̂2|Ŝ ij|Ŝ ij −R2|Sij|Sij
(5)

and [ ] represents averaging in the spanwise direction, ·̂ represents test 8ltering with 8lter
width R̂= �R. The explicit test 8ltering for quantity f, for example, is done by a discrete
form of

〈f̂〉= 〈f〉+R̂2

24

(
@2〈f〉
@x21

+
@2〈f〉
@x22

+
@2〈f〉
@x23

)
(6)

which represents a Gaussian 8ltering. We chose �=2 and, as has been done by Lilly [19],
when the right-hand side of Equation (4) becomes negative, CS is set to zero.

The boundary conditions are shown in Figure 1 and are: the nonslip condition on the
cylinder surface; slip condition on the top and bottom boundaries; the periodic boundary con-
ditions in the spanwise direction; the uniform in�ow condition along the upstream boundary;
and radiation out�ow at the downstream boundary. These are the standard boundary conditions
recommended to the participants of the workshop [5].
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Table I. Computational grids.

Key Grid size Minimum grid width Points inside cylinder

G1 101× 91× 21 0.05 21× 21
G2 130× 111× 21 0.04 26× 29

Table II. Di9erencing schemes for convective terms.

Key Description

CD2 Conventional 2nd-order central di9erence
CC2 Conservative 2nd-order central di9erence
CD4 Conventional 4th-order central di9erence
UB3 3rd-order upwind-biased di9erence
UB5 5th-order upwind-biased di9erence

3. NUMERICAL METHODS

3.1. Calculation domain and computational grid

Calculated �ow con8guration and the coordinate de8nition are given in Figure 1. The calcula-
tion domain chosen here is larger upstream of the cylinder than speci8ed for the participants
of the workshop [5] but the rest are about the same. We have chosen two grid systems to be
used for all computations as shown in Table I. Points in both grids are uniformly distributed
over the cylinder surface and in the spanwise direction. The spacing in the streamwise and
cross-stream directions are stretched, gradually going away from the cylinder. The 8rst grid
is 101× 91× 21 which can be managed fairly easily even on personal computers. This will
be referred to as grid G1. Grid G2 is 130× 111× 21 which is about 50 per cent larger in
terms of the total number points, but still can be managed by most workstation computers,
and the smallest spacing on the surface is 0.04 times the cylinder side D.

3.2. Discretization of convective terms

The convective terms are discretized by 8ve di9erent methods, namely, conventional non-
conservative central di9erencing schemes of 2nd- and 4th-order accuracy, the upwind-biased
schemes of 3rd- and 5th-order accuracy and the fully conservative 2nd-order central di9erenc-
ing scheme of Morinishi [6]. These will be referred to as CD2, CD4, UB3, UB5 and CC2,
respectively as summarized in Table II. The conventional di9erencing schemes of di9erent
orders are generated by a single general formula given by Fornberg [20]. The 3rd-order one
coincides with the UTOPIA scheme. The fully conservative scheme follows Morinishi’s [6]
formula. Then, these are written in explicit Adams–Bashforth form with respect to time.

The rest of the numerical methods are 8xed for all cases. The viscous and the subgrid
terms are di9erenced by the 2nd-order central di9erence, and written in fully implicit form so
that time advancing is done using an SOR iterative method. The pressure is solved using the
HSMAC procedure. These procedures are the same as those used and veri8ed in Nakayama
and Noda [21].
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4. VALIDATION AT LOW REYNOLDS NUMBER

For the purpose of validating the computer codes and examining the relative accuracies and
stability of di9erent schemes, calculations are 8rst performed at low Reynolds numbers. The
Reynolds number, Re, we refer to is de8ned by the upstream uniform �ow velocity Uin and
the cylinder side D. For test cases at very low Reynolds numbers of 50 and 100, only coarse
grid G1 is used for all cases except for the case of Re=100, the scheme CD4 for which
calculation on grid G1 diverged if started from the uniform initial �ow condition, and the
results with grid G2 are shown.

First, Figure 2(a) and (b) show the results for Re=50, represented by the plots of con-
tours of constant vorticity and streamlines. At this low Reynolds number, the �ow is steady
and symmetric with twin vortices in the separation bubble. All the results agree very well
con8rming the basic calculation procedure. Slight di9erences in the shapes of the streamlines
are due mainly to the method of tracing the streamlines, which sensitively depends on how
the stream function is computed from the calculated velocity vectors.

Figure 3(a) and (b) show similar results for the case of Re=100. At this Reynolds number,
the �ow starts to be unsteady and the results shown here are all at nondimensional time
tUin=D=20 from the initial uniform �ow condition. The results of low-order central di9erence
scheme CD2 on G1 do not show unsteadiness and the 4th-order non-conservative scheme
CD4 diverged if run on grid G1. The 3rd-order upwind biased scheme UB3 and CD4 on
8ne grid G2 agree very well. In order to con8rm that these results are correct, the values of
some computed parameters are summarized in Table III comparing with the results of Franke
et al. [22]. Additional calculation was also made at Re=150 using UB3 on grid G1, so
that closer comparison with the calculation of Franke et al. [22] can be made. The results
are shown in Figure 4 for two phases of the vortex shedding cycle and good agreement is
con8rmed.

Figure 5(a) and (b) show the results for Re=200 for various schemes for the two grids.
According to Sohankar et al. [23], the �ow starts to show three dimensionality and secondary
vortices at this Reynolds number. CD2 scheme on G1 shows the pressure oscillation upstream
of the cylinder. The same scheme on the 8ne grid G2 does not show this instability but
appears to give only steady �ow. UB3 on G1 does not show vortex shedding either, while
the conservative scheme CC2 on G1 shows a weak shedding. The results of UB3 and CD4
on grid G2 agree well with each other and the results of Sohankar et al. [23] obtained for the
same condition. These three methods were further run for higher Reynolds number of 500,
in which the vortex shedding becomes very strong and transition to turbulent �ow begins,
and it is thought that an LES method for turbulent �ows would have to be able to cope with
this type of �ow. The non-conservative scheme CD4, however, diverged at an early stage of
calculation but UB3 and CC2 schemes produced results that are shown in Figure 6(a) and (b).
The CC2 scheme on grid G1 starts to show instability like that seen with the non-conservative
central di9erence schemes at a lower Reynolds number of 200. UB3 and CC2 schemes on
grid G2 gave results at this and higher Reynolds numbers, though their accuracies cannot be
assured at the present time.

The results of these laminar �ow calculations may be summarized as below. While the
magnitudes and the nature of errors associated with various 8nite di9erence schemes vary
depending on the type and the order of accuracy of the schemes and the grid resolution,
they all increase in magnitude with increasing Reynolds number. With the present 8neness or
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Figure 2. Calculation results for Re=50: (a) contours of constant vorticity; (b) streamlines.
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Figure 3. Calculation results for Re=100: (a) contours of constant vorticity; (b) streamlines.
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Table III. Calculated parameters for Re=100.

Scheme and grid Drag coeLcient Strouhal number

Total Due to pressure Due to friction

UB3, G2 1.626 1.565 0.061 0.162
CD4, G2 1.642 1.581 0.061 0.161
CD2, G1 1.522 1.465 0.057 0.152
Franke et al. [22] 1.61 1.55 0.06 0.165

Figure 4. Calculation results for Re=150 compared with Franke et al. [22] calculation: (a) present
calculation with UB3 scheme and grid G1; (b) Franke et al. [22].

coarseness of the computational grid G1, only upwind-biased schemes survived the stability
problems up to the Reynolds number of 500. Though the conservative CC2 scheme run on
G2 did give results for Re=500, it too started diverging at a higher Reynolds number. The
central di9erence schemes, conservative or non-conservative, have dispersive errors and they
all diverge at some Reynolds number below the laboratory Reynolds number for which we
are interested in doing LES. This implies that for computation of turbulent �ows at very high
Reynolds numbers, the central di9erencing schemes have serious stability problems unless the
grid has suLcient resolution and=or it is used with the subgrid-stress model that reduces the
e9ective Reynolds number signi8cantly and uniformly. The former remedy of using suLcient
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Figure 5. Calculation results for Re=200: (a) contours of constant vorticity; (b) streamlines.
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Figure 5. Continued.

grid resolution cannot and should not be hoped for in an LES. The dissipative errors that
upwind-biased schemes su9er increasingly more with higher Reynolds number, may be or
should be treated as part of the subgrid stress that just gives suLcient viscosity for stability.
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Figure 6. Calculation results for Re=500: (a) contours of constant vorticity; (b) streamlines.

Then the subgrid turbulence stress model to be used will have to be that augments de8ciency
of this numerical viscosity. This conclusion somewhat contradicts the reported results of many
simulations successfully performed with central di9erence schemes, but is what is arrived at
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with the present method of fully implicit time advancing of the viscous terms and HSMAC
procedure of pressure iteration. A recent work by Kogaki et al. [24] using a coarser grid,
however, reports a similar conclusion as the present one.

5. CALCULATION OF TURBULENT FLOW AND COMPARISON
WITH EXPERIMENTS

Here, we examine the turbulent �ow calculation of Lyn’s square cylinder test case [16; 17]
at Re=22000. Figure 7 shows instantaneous results, not necessarily at the same instance, of
the contours of the constant spanwise vorticity calculated for this turbulent �ow case with
the standard Smagorinsky model with the di9erence schemes CC2, UB3 and UB5 on grid
G2. Contrary to other reports of successful LES simulation using 2nd-order central di9erence
schemes, the only central di9erence scheme that survived up to Re=500, CC2, shows spurious
oscillation problems at an early stage. The following calculations, therefore, are made only
with the upwind-biased schemes UB3 and UB5. The turbulence models considered are the
conventional Smagorinsky and dynamic Smagorinsky models as explained earlier. The results
of the bulk parameters calculated by these methods are summarized in Table IV. These and the
mean quantities shown below were obtained by averaging over eight vortex shedding cycles

Figure 7. Calculation results for turbulent �ow at Re=22 000 in terms
of the contours of constant vorticity.
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Figure 8. Calculation results of mean velocity in the wake and the boundary layer using di9erent grids:
(a) along the wake centerline; (b) in the boundary layer on the cylinder side, x1=D=−0:5.

after an initial development time of 50D=Uin. The mean lift coeLcient over a suLciently
long time should be zero and its closeness to zero is an indication of accuracy of the time
averaging. Experimental values of this quantity and the RMS �uctuations of the lift and drag
coeLcients are not available but listed here together with the calculation by Tamura, which
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242 A. NAKAYAMA AND S. N. VENGADESAN

Figure 9. Calculation results of the surface pressure distribution using di9erent grids.

is one of the best results reported at the workshop [5]. Although it is seen that the mean lift
coeLcient Cl is not quite zero but is suLciently small compared with the RMS value for all
calculation cases.

The details of the calculation results are presented by separately examining the e9ects
of the grid resolution, order of accuracy of the di9erence schemes and the subgrid-stress
models. A 3rd-order upwind scheme with the Smagorinsky model is taken as the refer-
ence and shown in each comparison together with experiments and one of the results of
the workshop [5], so that ideas about their relation with other published calculations can be
obtained.

5.1. In/uence of grid resolution

On relatively easily accessible workstation-level computers, the total number of grid points
that can be managed is around half a million points. Our choice of grid G1 is such that may
be run on most computers very economically. It resolves the cylinder side into 20 sections but
the boundary layer is not suLciently resolved and the inner layer of the boundary layer even
at the mid-point on the side surface is completely missed. Grid G2 uses about 50 per cent
more points and resolves the boundary layer better but the 8rst point from the surface still
falls far outside the laminar sublayer of the boundary layer after reattachment. This implies
that either grid is far from suLcient for resolving the small-scale motion next to the surface
to be able to con8dently apply the nonslip boundary condition. The instantaneous logarithmic
law, which is often used in such cases, is even less sure to be applied in the present case with
massive separation. This is a typical situation of practical LES of a complex �ow at a large
Reynolds number and how the small-scale motion near the wall is modeled or resolved may
play a more important role than other aspects of the calculation and modeling. As Bouris and
Bergeles [13] point out, capturing the near-wall motion may be more important than capturing
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Figure 10. Calculation results of the �uctuation intensity using di9erent grids: (a) streamwise �uctu-
ation u21=U

2
in along the wake centerline; (b) transverse �uctuation u22=U

2
in along the wake centerline;

(c) streamwise �uctuation u21=U
2
in in the boundary layer at x1=D=−0:5.

the three-dimensional motion. We have tried this e9ective two-dimensional LES but we found
that we could not take a suLciently 8ne grid and the results did not come close to other
methods and are not shown here. This point has been stressed by Spalart [25] who proposes a
new method that uses a one-equation turbulence model to represent the small-scale boundary
layer on the wall and a conventional LES in the separated �ow region away from solid walls.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:227–253
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Figure 10. Continued.

Figure 8(a) and (b) show the distribution of the time-averaged streamwise velocity compo-
nent, U1 = 〈u1〉 along the wake centerline and in the boundary layer at the center (x1=D= − 0:5)
of the cylinder side surface, both compared with Lyn’s experiment [16] and one of the best
results, TAMU2, reported at the workshop [5]. It is seen that the results with grid G1 show far
too long a recirculation region. Our results of UB3 on G2 with the conventional Smagorinsky
model is seen to do about the same as TAMU2 [5] but the length of the recirculation region
is closer to the experiment. Figure 9 shows a comparison of the results of the surface pres-
sure compared with the experimental data of Lee [26] and Ohtsuki et al. [27]. The present
results of UB3 on G2 are seen to be much closer to the experiment than Tamura’s results.
Figure 10(a), (b) and (c) compare the turbulent intensity components along the wake cen-
ter line and in the boundary layer. Calculations with the coarse grid G1 appears just un-
acceptable in terms of turbulence as well, but the calculation using grid G2 gives reason-
able results except that the streamwise intensity in the wake is overpredicted and the trans-
verse intensity is underpredicted. What this means is that with the 3rd-order upwind-biased
scheme and the conventional Smagorinsky model, the grid resolution at least as 8ne as the
present G2 can give reasonable results, which may be better than those with the dynamic
model.

5.2. Order of accuracy of 1nite di2erence schemes

Here we examine how the di9erence schemes of di9erent orders of accuracy in�uence the
results. For this purpose we show comparisons of the results with UB3 and UB5 schemes.
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Figure 11. Calculation results of mean velocity in the wake and the boundary layer
using di9erent schemes and grids: (a) along the wake centerline; (b) in the boundary

layer on the cylinder side, x1=D=−0:5.
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Figure 12. Calculation results of the surface pressure distribution using di9erent schemes and grids.

Figure 11(a) and (b) shows the mean velocity along the wake centerline and the velocity
pro8le in the boundary layer on the cylinder side just like Figure 8(a) and (b). It is seen that
using the 5th-order scheme UB5 run on grid G2, the level of the mean velocity in the wake
comes very close to the experiment, though the recirculation region is still much smaller than
the experiment. The prediction of the surface pressure is shown in Figure 12. It also indicates
that the higher order method on 8ne grid predicts the experiment very well. Figure 13 further
shows the turbulence intensities in the wake and in the boundary layer. The overprediction of
streamwise turbulence intensity u21, and underprediction of u22 seen in the results by UB3 are
now signi8cantly improved by using the higher order method UB5. The only exception may
be that the transverse intensity in the near wake is seen to be slightly overpredicted, which
perhaps is related to the underprediction of the recirculation region and its improvement will
require better representation of the near-wall �ow.

5.3. In/uence of subgrid model

Here we examine if and how the results obtained with the standard Smagorinsky model may
be altered by the dynamic subgrid model. Calculation results with the standard Smagorinsky
model, the dynamic Smagorinsky model and without using a subgrid at all, all using the UB3
scheme on grid G2 are compared. The last case became unstable when run for a long time but
did produce results up to the nondimensional time of about 100D=Uin. Figures 14 through 16
are the same comparisons as done with Figures 8 through 10 for the grid resolution and Figures
11 through 13 for the order of di9erence schemes. The mean-velocity and the surface pressure
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Figure 13. Calculation results of the �uctuation intensity along the wake centerline and the boundary
layer using di9erent schemes and grids: (a) streamwise �uctuation u21=U

2
in along the wake centerline;

(b) transverse �uctuation u22=U
2
in along the wake centerline; (c) streamwise �uctuation u21=U

2
in in the

boundary layer at x1=D=−0:5.
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Figure 13. Continued.

results shown in Figures 14 and 15, show surprisingly similar improvements seen going from
the UB3 scheme to UB5 scheme with the same Smagorinsky model. The turbulence results,
shown in Figures 16(a) and (b), show somewhat di9erent kinds of improvements than those
obtained by the higher order di9erencing, but the magnitudes of improvements are very close.
Hence, re8ning the subgrid model does nothing more than, but as much as, what the higher
order scheme or the 8ner grids do.

The simulation without using any subgrid-stress model is seen to be way out of agreement
with the experiment. This means that the numerical viscosity provided by the upwind-biased
scheme may just be enough to conduct a stable calculation but nowhere enough to represent
the physical subgrid turbulence viscosity.

5.4. Overall evaluation

The above results of various calculations and comparisons indicate that the better results
of blu9-body turbulent-�ow prediction at high Reynolds number can be obtained by any
of the following methods of reducing the error in representing the subgrid stress. In other
words, by increasing the grid resolution, increasingly smaller scale motion is resolved and the
magnitude of the modeled part of turbulence reduces. By using the higher order di9erence
scheme, the e9ective cut-o9 wave number is increased to reduce the subgrid stress again. By
using a dynamic procedure, the local subgrid stress is represented more accurately. In carrying
out these calculations, however, each of the re8ned methods required correspondingly larger
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Figure 14. Calculation results of mean velocity in the wake and the boundary layer using
di9erent subgrid stress models: (a) along the wake centerline; (b) in the boundary layer

on the cylinder side, x1=D=−0:5.

amounts of computational time and storage space, and the method that has better merits will
depend on di9erent constraints dictated by the computational resources available in di9erent
situations.
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Figure 15. Calculation results of the surface pressure distribution using a di9erent subgrid-stress model.

6. CONCLUSIONS

The following can be concluded from the results of the present computations of �ow around
a square cylinder using both central and upwind-biased 8nite-di9erencing schemes of various
orders of accuracy, computational grids with di9erent resolution, with conventional and dy-
namic eddy viscosity subgrid models, but with the same procedures of calculation in other
aspects such as pressure iteration and time advancing methods.

With the total number of grid points kept within the limits of the capabilities of the
workstation-level computers, the central di9erencing schemes of the realistic orders of trunca-
tion errors, the stability problems that appear upstream of the cylinder cannot be avoided for
moderately high Reynolds numbers, and for turbulent �ows used in conjunction with the eddy-
viscosity model of the conventional or dynamic Smagorinsky types. This is distinct from the
numerical schemes used in a DNS, in which the grid resolution is taken suLciently 8ne to in-
sure that all scales of motion are resolved. In LES calculations, the e9ects of the unresolved
motion, which could have prevented instability, are not there and the physical turbulence
model replacing them may not be enough to prevent instability. The upwind-biasing appears
to provide just what is needed to prevent the calculation to diverge. The stabilizing e9ects
of the numerical viscosity, however, do not replace the more versatile role of the subgrid
stresses that need to be represented separately by a physical model such as the Smagorinsky
model.

The 3rd-order upwind-biased scheme with conventional Smagorinsky model does fairly well
if the grid used resolves the cylinder side into about 30 segments. Increasing the order of
accuracy to the 5th-order or implementing the dynamic procedure improves the results of
all pressure distribution, mean velocity distribution and turbulence stresses, but they all incur
substantially increased computational loads, which may have been traded for a 8ner grid with
better results for the lower order di9erence schemes.
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Figure 16. Calculation results of the �uctuation intensity along the wake centerline and the bound-
ary layer using di9erent subgrid stress-models: (a) streamwise �uctuation u21=U

2
in along the wake

centerline; (b) transverse �uctuation u22=U
2
in along the wake centerline; (c) streamwise �uctuation

u21=U
2
in in the boundary layer at x1=D=−0:5.
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Figure 16. Continued.

Finally, resolving the near-wall low-Reynolds-number region at a cost of representing the
spanwise direction, and hence the three-dimensionality, did not improve the overall accuracies.
A prohibitively large grid is needed to capture the very small-scale accelerating �ow around
the sharp corner and the laminar sublayer of the separating boundary layers, which will be the
key elements of further improvement such as better prediction of the length of the recirculation
region, and an overwhelming enhancement of the quality of simulation may not be realized
by further improving the order of accuracy or re8ning the subgrid-stress model.
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